Prediction of spontaneous heating susceptibility of Indian coals using fuzzy logic and artificial neural network models

نویسندگان

  • H. B. Sahu
  • Saumyakant Padhee
  • S. S. Mahapatra
چکیده

Coal mine fires due to spontaneous heating are a major concern worldwide. Most of these fires could be averted if suitable preventive measures are taken. Since the spontaneous heating potential of all types of coals are not the same, its accurate prediction is essential to plan efficient preventive measures and improve production and storage capabilities of a mine. The current paper presents a comparison of two approaches viz. fuzzy expert system and the commonly used artificial neural networks (ANN) for forecasting the self heating of coals. To apply these techniques, 30 coal samples of varying ranks were collected from different coalfields of the country. The intrinsic properties of the coal seams were determined by proximate, ultimate and petrographic analyses. The spontaneous heating proneness of the samples was studied using crossing point temperature (CPT), which is treated as an important measure for fire susceptibility of coal seams in Indian mines. Correlation studies between the intrinsic properties and CPT was carried out to identify the parameters for prediction purpose. Using moisture, volatile matter, and ash content as input parameters, CPT is predicted using fuzzy logic based on Takagi–Sugeno– Kang (TSK) model and ANN based on back propagation algorithm. Triangular fuzzy membership function is adopted for describing input variables. The results show both the models predict CPT with reasonable accuracy. Fuzzy modelling being a simpler approach, it can be utilized in the field where experimental data on coal properties are not precisely available but human judgement and intuition can be adopted for prediction purpose. 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models

The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This   work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on De...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

Prediction of Bubble Point Pressure & Asphaltene Onset Pressure During CO2 Injection Using ANN & ANFIS Models

Although CO2 injection is one of the most common methods in enhanced oil recovery, it could alter fluid properties of oil and cause some problems such as asphaltene precipitation. The maximum amount of asphaltene precipitation occurs near the fluid pressure and concentration saturation. According to the description of asphaltene deposition onset, the bubble point pressure has a very special imp...

متن کامل

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011